Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

George Ferguson, ${ }^{\text {a* }}$ Brian J. O^{\prime} Leary ${ }^{\text {b }}$ and Trevor R. Spalding ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1, and ${ }^{\mathbf{b}}$ Department of Chemistry, University College Cork, National University of Ireland, Cork, Ireland

Correspondence e-mail: actac@uoguelph.ca

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.052$
$w R$ factor $=0.143$
Data-to-parameter ratio $=14.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(triphenylsilyl) phenylphosphonate

In the structure of the title monomeric phosphorosilicate, $\mathrm{C}_{42} \mathrm{H}_{35} \mathrm{O}_{3} \mathrm{PSi}_{2}$ or $\mathrm{PhP}(=\mathrm{O})\left(\mathrm{OSiPh}_{3}\right)_{2}$, there are notable differences in the chemically equivalent $\mathrm{P}^{\mathrm{V}}-\mathrm{O}-\mathrm{Si}$ angles [141.59 (16) and $152.38(18)^{\circ}$] and the two $\mathrm{P}-\mathrm{O}(-\mathrm{Si})$ distances [1.546 (3) and 1.566 (3) Å]. There is also a significant $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{P}$ hydrogen bond which links molecules into extended chains along [100].

Comment

Compounds containing $\mathrm{P}-\mathrm{O}-\mathrm{Si}$ linkages ('phosphorosilicates', also called 'phosphosiloxanes') are amongst the best known of all heterosiloxane species. Whereas the synthesis and chemical properties of simple phosphosiloxanes have been studied exhaustively (Borisov et al., 1971; Chernyshev \& Bugerenko, 1968), the structural properties have not received much attention. This paper addresses the lack of structural information on $\mathrm{P}-\mathrm{O}-\mathrm{Si}$ species in a simple $\mathrm{O}=\mathrm{P}^{\mathrm{V}}-\mathrm{O}-\mathrm{Si}-$ containing compound, viz. $\mathrm{PhP}(=\mathrm{O})\left(\mathrm{OSiPh}_{3}\right)_{2}$, (I).

(I)

This colourless crystalline solid is quite air- and moisturestable; exposure to the atmosphere for $c a$ two months produced no discernible changes in the melting point or IR spectrum. However, it was completely hydrolysed after three hours in a water-acetone (3:1) mixture heated under reflux.

A view of (I) with the numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Received 21 February 2005
Accepted 24 February 2005
Online 4 March 2005

Figure 2
A view showing the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding in (I). See Table 2 for symmetry codes.

The central tetrahedral $(\mathrm{O}=) \mathrm{PO}_{2} \mathrm{C}_{\mathrm{Ph}}$ unit in (I) is linked through the two singly bound O atoms to two $-\mathrm{SiPh}_{3}$ groups with tetrahedrally coordinated silicon (Fig. 1). Principal bond distance and angles for (I) are given in Table 1. The two chemically equivalent $\mathrm{P}^{\mathrm{V}}-\mathrm{O}-\mathrm{Si}$ angles in (I) differ considerably in magnitude, with values of 141.59 (16) and $152.38(18)^{\circ}$. The two $\mathrm{P}-\mathrm{O}(-\mathrm{Si})$ distances are also different (at the $3 \times$ s.u. level), with dimensions of 1.546 (3) and 1.566 (3) \AA, the latter value corresponding with the smaller $\mathrm{P}-\mathrm{O}-\mathrm{Si}$ angle. The $\mathrm{Si}-\mathrm{O}(-\mathrm{P})$ distances are 1.651 (3) and 1.661 (3) Å.

Molecules are linked to form chains in the [100] direction by a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Table 2) involving C33-H33 and an adjacent O3 atom of a symmetry-related molecule at $(-1+x, y, z)$. There are no significant $\pi-\pi$ interactions in the crystal structure, but there are three $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions which effectively link the molecules to generate a threedimensional network (see Table 2).

Experimental

Reactions were carried out under an inert atmosphere. Solvents were dried and distilled prior to use. Phenylphosphonic acid and triphenylsilanol were obtained from Aldrich and were used directly. Phenylphosphonic acid ($0.636 \mathrm{~g}, 4.02 \mathrm{mmol}$) and triphenylsilanol $(2.222 \mathrm{~g}, 8.04 \mathrm{mmol})$ were refluxed in toluene $(50 \mathrm{ml})$ in a DeanStark apparatus for 6 h . Recrystallization of the colourless product from dichloromethane-cyclohexane (1:2) afforded (I) as rectangular crystals [$2.452 \mathrm{~g}, 3.85 \mathrm{mmol}, 90.4 \%$; 461-464 K (literature $461-464 \mathrm{~K}$; Chamberlain et al., 1960)]. Analysis found: C 74.4, H 5.25\%; $\mathrm{C}_{42} \mathrm{H}_{35} \mathrm{O}_{3} \mathrm{PSi}_{2}$ requires: C 74.75, H 5.2%. FT-IR (KBr disc), $v_{\text {max }} /$ $\mathrm{cm}^{-1}: 1429(s), 1255(s), 1120(s), 1075(s), 1008(v s), 994(s), 716(s)$, $699(s), 513(s) .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, p.p.m.): 7.77-7.21 ($m, 35 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$). ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, p.p.m.): 135.47, 134.99, 132.38, 131.14, 130.37, 129.65, 128.06, 127.29. MS (EI), m/z: $674\left(M^{+}\right), 597\left(M^{+}-\mathrm{Ph}\right), 519$ $\left(M^{+}-2 \mathrm{Ph}-\mathrm{H}\right), 259\left(\mathrm{Ph}_{3} \mathrm{Si}^{+}\right), 77\left(\mathrm{Ph}^{+}\right)$.

Crystal data

$\mathrm{C}_{42} \mathrm{H}_{35} \mathrm{O}_{3} \mathrm{PSi}_{2}$
$Z=2$
$M_{r}=674.85$
Triclinic, $P \overline{1}$
$a=9.420(6) \AA$
$b=10.479$ (6) \AA
$c=19.269$ (9) \AA
$\alpha=85.44(5)^{\circ}$
$\beta=89.45(5)^{\circ}$
$\gamma=71.94(5)^{\circ}$
$V=1802.4(18) \AA^{3}$
$D_{x}=1.243 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 26 reflections
$\theta=15.3-19.4^{\circ}$
$\mu=0.18 \mathrm{~mm}^{-1}$
$T=294$ (1) K
Rectangular, colourless
$0.41 \times 0.15 \times 0.15 \mathrm{~mm}$
Data collection
Enraf-Nonius CAD-4
diffractometer

$$
h=-10 \rightarrow 11
$$ $\omega / 2 \theta$ scans

$$
\theta_{\max }=25.0^{\circ}
$$

$$
k=0 \rightarrow 12
$$

Absorption correction: none
6674 measured reflections
6349 independent reflections 2874 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.010$
$l=-22 \rightarrow 22$
3 standard reflections every 250 reflections intensity decay: 3.2%

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0627 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.26$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.27 \mathrm{e} \AA^{-3}$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

P1-O3	$1.453(3)$	$\mathrm{Si} 1-\mathrm{C} 31$	$1.852(4)$
$\mathrm{P} 1-\mathrm{O} 2$	$1.546(3)$	$\mathrm{Si} 1-\mathrm{C} 21$	$1.856(4)$
$\mathrm{P} 1-\mathrm{O} 1$	$1.566(3)$	$\mathrm{Si} 2-\mathrm{O} 2$	$1.651(3)$
$\mathrm{P} 1-\mathrm{C} 11$	$1.777(4)$	$\mathrm{Si} 2-\mathrm{C} 71$	$1.849(4)$
$\mathrm{Si} 1-\mathrm{O} 1$	$1.661(3)$	$\mathrm{Si} 2-\mathrm{C} 61$	$1.855(4)$
$\mathrm{Si} 1-\mathrm{C} 41$	$1.845(4)$	$\mathrm{Si} 2-\mathrm{C} 51$	$1.858(4)$
$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 2$	$114.22(17)$	$\mathrm{C} 41-\mathrm{Si} 1-\mathrm{C} 21$	$111.33(18)$
$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 1$	$114.45(16)$	$\mathrm{C} 31-\mathrm{Si} 1-\mathrm{C} 21$	$110.66(19)$
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 1$	$103.26(14)$	$\mathrm{O} 2-\mathrm{Si} 2-\mathrm{C} 71$	$110.47(16)$
$\mathrm{O} 3-\mathrm{P} 1-\mathrm{C} 11$	$112.45(17)$	$\mathrm{O} 2-\mathrm{Si} 2-\mathrm{C} 61$	$108.17(17)$
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{C} 11$	$105.74(16)$	$\mathrm{C} 71-\mathrm{Si} 2-\mathrm{C} 61$	$111.96(18)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{C} 11$	$105.79(17)$	$\mathrm{O} 2-\mathrm{Si} 2-\mathrm{C} 51$	$104.43(15)$
$\mathrm{O} 1-\mathrm{Si} 1-\mathrm{C} 11$	$106.78(17)$	$\mathrm{C} 71-\mathrm{Si} 2-\mathrm{C} 51$	$109.75(18)$
$\mathrm{O} 1-\mathrm{Si} 1-\mathrm{C} 31$	$104.26(16)$	$\mathrm{C} 61-\mathrm{Si} 2-\mathrm{C} 51$	$111.79(18)$
$\mathrm{C} 41-\mathrm{Si} 1-\mathrm{C} 31$	$112.47(18)$	$\mathrm{P} 1-\mathrm{O} 1-\mathrm{Si} 1$	$141.59(16)$
$\mathrm{O} 1-\mathrm{Si} 1-\mathrm{C} 21$	$111.07(16)$	$\mathrm{P} 1-\mathrm{O} 2-\mathrm{Si} 2$	$152.38(18)$

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C22-H22 \cdots O3	0.93	2.58	3.324 (6)	137
$\mathrm{C} 33-\mathrm{H} 33 \cdots \mathrm{O} 3^{\text {i }}$	0.93	2.39	3.243 (6)	152
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{Cg} 1^{\text {ii }}$	0.93	2.78	3.631 (6)	153
$\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{Cg} 2^{\text {iii }}$	0.93	2.99	3.897 (6)	165
$\mathrm{C} 34-\mathrm{H} 34 \cdots \mathrm{Cg} 3^{\text {i }}$	0.93	2.93	3.709 (7)	142

Symmetry codes: (i) $x-1, y, z$; (ii) $x, 1+y, z$; (iii) $1-x, 1-y,-z . C g 1, C g 2$ and $C g 3$ are the centroids of the phenyl rings C61-C66, C51-C56 and C41-C46, respectively

All H atoms were visible in difference maps and included as riding atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: DIFRAC with profile analysis (Gabe \& White, 1993); cell refinement: DIFRAC; data reduction: DATRD2 in

organic papers

NRCVAX94 (Gabe et al., 1989); program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) in WinGX (Version 1.70.01; Farrugia, 1999); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

References

Borisov, S. N., Voronkov, M. G. \& Lukevits, E. Ya. (1971). Organosilicon Derivatives of Phosphorus and Sulfur. New York: Plenum Press.

Chamberlain, M. M., Kern, G., Jabs, G. A., Germanas, D., Greene, A., Brain, K. \& Wayland, B. (1960). US Department. Com. Office Tech. Serv. PB Report 152, pp. 086-110.
Chernyshev, E. A. \& Bugerenko, E. F. (1968). Organomet. Chem. Rev. A, 3, 469-496.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
Gabe, E. J. \& White, P. S. (1993). DIFRAC. Pittsburgh meeting. Abstract PA104.
Sheldrick, G. M. (1985). SHELXS86. Univeristy of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

